
1

Active Learning of Dynamics for Data-Driven
Control Using Koopman Operators

Ian Abraham and Todd D. Murphey

Abstract—This paper presents an active learning strategy
for robotic systems that takes into account task information,
enables fast learning, and allows control to be readily synthesized
by taking advantage of the Koopman operator representation.
We first motivate the use of representing nonlinear systems as
linear Koopman operator systems by illustrating the improved
model-based control performance with an actuated Van der
Pol system. Information-theoretic methods are then applied to
the Koopman operator formulation of dynamical systems where
we derive a controller for active learning of robot dynamics.
The active learning controller is shown to increase the rate of
information about the Koopman operator. In addition, our active
learning controller can readily incorporate policies built on the
Koopman dynamics, enabling the benefits of fast active learning
and improved control. Results using a quadcopter illustrate
single-execution active learning and stabilization capabilities
during free-fall. The results for active learning are extended for
automating Koopman observables and we implement our method
on real robotic systems.

I. INTRODUCTION

In order to enable active learning for robots, we need a
control algorithm that readily incorporates task information,
learns dynamic model representation, and is capable of in-
corporating policies for solving additional tasks during the
learning process. In this work, we develop an active learning
controller that enables a robot to learn an expressive repre-
sentation of its dynamics using Koopman operators [1]–[4].
Koopman operators represent a nonlinear dynamical system as
a linear, infinite dimensional, system by evolving functions of
the state (also known as function observables) in time [1]–[4].
Often, these linear representations can capture the behavior
of the dynamics globally while enabling the use of known
linear quadratic control methods. As a result, the Koopman
operator representation changes how we represent the dynamic
constraints of the robotic systems, carrying more nonlinear
dynamic information, and often improving control authority.
Koopman operator dynamics are typically found through

data-driven methods that generate an approximation to the
theoretical infinite-dimensional Koopman operator [2], [4],
[5]. These data-driven methods require robotic systems to
be actuated in order to collect data. The process for data

Authors are with the Neuroscience and Robotics lab (NxR) at the Depart-
ment of Mechanical Engineering, Northwestern University, 2145 Sheridan
Road Evanston, IL, 60208.

This material is based upon work supported by the National Science
Foundation under awards NSF CPS 1837515. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation

email: i-abr@u.northwestern.edu, t-murphey@northwestern.edu

collection in robotics is an active process that relies on control;
therefore, learning the Koopman operator formulation, for
robotics, is an active learning process.
In this paper, we use the Koopman operator representation

for improving control authority of nonlinear robotic systems.
Moreover, we address the problem of calculating the linear
representation of the Koopman operator by exploiting an
information-theoretic active learning strategy based on the
structure of Koopman operators. As a result, are able to
demonstrate active learning through data-driven control in real-
time settings where only a single execution of the robotic sys-
tem is possible. Thus, the contribution of this paper is a method
for active learning of Koopman operator representations of
nonlinear dynamical systems which exploits both information-
theoretic measures and improved control authority based on
Koopman operators.

A. History and Related Work

Active learning in robotics has recently been a topic of
interest [6]–[10]. Much work has been done in active learn-
ing for parameter identification [11]–[14] as well as active
learning for state-control mappings in reinforcement learning
[9], [15]–[18] and adaptive control [19]–[21]. In particular,
much of the mentioned work refers to exciting a robot’s
dynamics —using information theoretic measures [10], [12],
[13], reward functions [9], [10], [15], [17] in reinforcement
learning, and other methods [22], [23]—in order to obtain the
“best” set of measurements that resolve a parameter or the
“best-case” mapping (either of the state-control map or of the
dynamics). This paper uses active learning to enable robots
to learn Koopman operator representations of a robot’s own
dynamic process.
Koopman operators were first proposed in 1931 in work

by B.O. Koopman [1]. At the time, approximating the Koop-
man operator was computationally infeasible; the onset of
computers enabled data-driven methods that approximate the
Koopman operator [2], [4], [24]. Other research involves com-
putation of Koopman eigenfunctions and Koopman-invariant
subspaces that determine the size of the Koopman opera-
tor [25]–[27]. This allows for finite dimensional Koopman
operators that captures nonlinear dynamics while compressing
the overall state dimension used to represent the dynamical
system.
Recent works, on combining model-based control methods

and Koopman operators have suggested that control based on
Koopman operators is a promising avenue for many fields in-
cluding robotics [3], [5], [26]–[33]. In particular, recent work



2

from the authors implemented a controller using a Koopman
operator representation of a robotic system in an experimental
setting of a robot in sand [32]. Koopman operators are closely
related to latent variable (embedded) dynamic models [34].
In embedded dynamic models, an autoencoder [34], [35]
is used to compress the original state-space into a lower-
dimensional representation. The embedded dynamics model
then only evolves the states that are useful for predicting
the overall dynamical systems behavior. Koopman operators
represent the state of some dynamical system in a higher-
or lower- dimensional representation where the evolution of
the embedding is a linear dynamical systems. Thus, Koopman
operators are a special case of an embedded dynamic model
where the latent variable describes the nonlinearities of a
dynamical system and are represented as a linear differential
equation.

B. Relation to Previous Work
We extend previous work in [32] with new examples of

control with Koopman operator representations of robotic
systems. In addition, we provide an example in Section III
which gives further intuition for the use of Koopman operator
dynamics. Moreover, we address design choices when gener-
ating a Koopman operator dynamic representation of a robotic
systems and provide a methodology towards automating these
design choices. Last, we introduce a method for enabling the
robot to actively learn Koopman operator dynamics while
taking advantage of linear quadratic (LQ) approaches for
control. We note that there is no overlap with the results and
the theoretical content that is presented in this paper with [32].

C. Outline
The paper outline is as follows: Section II introduces the

Koopman operator and data-driven methods to approximate the
Koopman operator from data, including a recursively defined
online approach for approximating the Koopman operator.
Section III motivates using Koopman operator representations
of dynamical systems for control. Section IV introduces a
controller that enables robots to learn the Koopman operator
dynamics. Simulated results for active learning using our
method is provided with comparisons in Section V. Section VI
discusses methods for automating the design specifications of
the Koopman operator. Last, robot experiments are provided
in Section VII and concluding remarks in Section VIII
respectively.

II. KOOPMAN OPERATORS

This section introduces the Koopman operator and formu-
lates the Koopman operator for control of robotic systems.

A. Infinite Dimensional Koopman Operator
Let us first define the continuous dynamical system whose

state evolution is defined by

x(ti + ts) = F (x(ti), u(ti), ts) (1)

= x(ti) +

Z ti+ts

ti

f(x(s), u(s))ds,

where ti is the ith sampling time and ts is the sampling
interval, x(t) : R ! Rn is the state of the robot at time t,
u(t) : R ! Rm is the applied actuation to the robot at time
t, f(x, u) : Rn ⇥ Rm ! Rn is the unknown dynamics of the
robot, and F (x(ti), u(ti), ts) is the mapping which advances
the state x(ti) to x(ti + ts). In addition, let us define an
observation function g(x(t)) : Rn ! Rc 2 C where C is
the space of all observation functions. The Koopman operator
K is an infinite dimensional operator that directly acts on the
elements of C

[Kg] (x(ti)) = g(F (x(ti), u(ti), ts)), (2)

where u(ti), ts are implicitly defined in F such that

Kg(x(ti)) = g(F (x(ti), u(ti), ts)) = g(x(ti+1)). (3)

In words, the Koopman operator K takes any observation
of state g(x(ti)) at time ti and time shifts the observations,
subject to the control u(ti), to the next observable time ti+1.
This formulation assumes equal time spacing ts = ti+1� ti =
ti � ti�1.

B. Approximating the Data-Driven Koopman Operator
The Koopman operator K is infeasible to compute in the

infinite dimensional space. A finite subspace approximation
to the operator K 2 Rc ⇥ Rc acting on C ⇢ C is used where
we define a subset of function observables (or observations
of state) z(x) = [ 1(x), 2(x), . . . , c(x)]

> 2 Rc ⇢ C. Each
scalar valued  i 2 C and the span of all  i is the finite
subspace C ⇢ C. The operator K acting on z(x(ti)) is then
represented in discrete time as

z(x(ti+1)) = Kz(x(ti)) + r(x(ti)) (4)

where r(x) 2 C is the residual function error. In principle,
as c ! 1, the residual error goes to zero [3], [4]; however,
it is sometimes possible to find c < 1 such that r(x) =
0 [26]. Equation (4) gives us the discrete time transition of
observations of state in time. We overload the notation for the
Koopman operator and write the differential equation for the
observations of state as

ż = Kz(x(ti)) + r(x(ti)) (5)

where the continuous time K is acquired by taking the matrix
logarithm as ti+1 � ti ! 0.

Provided a data set D = {x(tm)}Mm=0, we can compute
the approximate Koopman operator K using least-squares
minimization over the parameters of K:

min
K

1

2

M�1X

m=0

kz(x(tm+1)� Kz(x(tm))k2. (6)

Since (6) is convex in K, the solution is given by

K = AG† (7)

where † denotes the Moore-Penrose pseudoinverse and

A =
1

M

M�1X

m=0

z(x(tm+1)z(x(tm))>,

G =
1

M

M�1X

m=0

z(x(tm))z(x(tm))>. (8)



3

The continuous time operator is then given by log(K)/ts. Note
that we can solve (6) using gradient descent methods [36] or
other optimization methods. We write a recursive least-squares
update [20], [37] which adaptively updates K as more data is
acquired.

C. Koopman Operator for Control
The Koopman operator can include a predefined input u

that contributes to the evolution of z(x(t)). Consider the
observable functions that includes the control input, v(x, u) :
Rx ⇥Rm ! Rcu where c = cx + cu. The resulting computed
Koopman operator can be divided into sub-matrices

K =


Kx Ku

· ·

�
, (9)

where Kx 2 Rcx⇥cx and Ku 2 Rcx⇥cu . Note that the term (·)
in (9) refers to terms that evolve the observations on control zu
which are ignored as there is no ambiguity in their evolution
(they are determined by the controller). The Koopman operator
dynamical system with control is then

ż = f(z, u) = Kxz(x(ti)) + Kuv(x(ti), u(ti)). (10)

Note that the data set D must now store u(ti), u(ti+1) in
order to compute the Koopman operator matrix Ku.

III. ENHANCING CONTROL AUTHORITY WITH KOOPMAN
OPERATORS

Koopman operators map dynamic constraints into a linear
dynamical system in a modified state-space. The Koopman
operator structure allows one to use linear quadratic (LQ)
control methods to compute optimal controllers for nonlinear
systems that can often outperform locally optimal LQ con-
trollers obtained through linearizing the nonlinear dynamics
model.
Let us consider control of the nonlinear forced Van der

Pol oscillator, the dynamics of which are defined in Ap-
pendix A-A, as an example. We specify the control task as
minimizing the following LQ objective

J =

Z ti+T

ti

x(t)>Qx(t) + u(t)>Ru(t)dt+

x(ti + T )>Qfx(ti + T ) (11)

where Q 2 Rn⇥n, R 2 Rm⇥m, and Qf 2 Rn⇥n. Choosing
the set of function observable (Appendix A-A), we can com-
pute a Koopman operator K by repeated simulation of the Van
der Pol oscillator subject to uniformly random control inputs
for 5000 randomly sampled initial conditions.
Since the Van der Pol oscillator dynamics are nonlinear, a

solution to the LQ control problem is to linearize the dynamics
about the equilibrium state xt = [0, 0]> and form a linear
quadratic control regulator (LQR). Using the Kooman operator
formulation of the Van der Pol dynamics, we can compute a
controller in a similar manner using the following objective

J =

Z ti+T

ti

z(t)>Q̃z(t) + u(t)>Ru(t)dt+

z(ti + T )>Q̃fz(ti + T ) (12)

where

Q̃ =


Q 0
0 0

�
2 Rcx⇥cx and Q̃f =


Qf 0
0 0

�
2 Rcx⇥cx .

(13)
Setting Q̃ and Q̃f to only include the state observables allows
us to compare the same control objective using the linearized
dynamics against the Koopman operator dynamics where the
first terms in the function observable z(x(t)) is the state of
the Van der Pol system itself.

(a) Int. Tracking Error (b) Trajectory

Fig. 1: Control performance of a forced van der pol oscillator
with an LQR control using the learned Koopman operator,
the linearization of the known system dynamics, and the
linearizion of a learned state-space model using the same data
and basis functions as the Koopman operator. The control
performance using the Koopman operator dynamics is shown
to outperform the LQR control with known dynamics. The
learned dynamics model performs equally to the known dy-
namics model and is overlayed on top of the known dynamics
results.

Figure 1 illustrates the improvement in control performance
when using the the Koopman operator dynamics for LQ
control instead of linearizing the dynamics around a local
region. We compare the control authority using a learned
dynamics model in the original state-space using Bayesian
optimization with the same functions used for the Koopman
operator. This illustrates that the data used to compute the
Koopman operator can learn a nonlinear model of the Van
der Pol dynamics in the original state-space. The Koopman
operator formulation of the Van der Pol approximates the
dynamic constraints as a linear dynamical systems in a higher
dimensional space that captures nonlinear dynamical behavior.
As a result, the Koopman operator formulation coupled with
LQ methods can be used to enhance the control the Van der
Pol system as shown in Figure 1b. Computing the resulting
trajectory error (Figure 1a) shows that the trajectory taken
from the Koopman operator controller results in less overall
integrated error. This is due to formulating the LQ controller
with additional information in the form of a dynamical systems
that evolves functions of state.
While this example illustrates the possible benefits of uti-

lizing the Koopman operator formulation, we ignored how the
data was collected for the Van der Pol dynamical system. In
fact, computing the Koopman operator used random inputs.
For this example, such an approach works reasonably, but
requires a significant amount of data to fully cover the state-
space of the Van der Pol system. The following sections



4

introduce a method that enables a robot to actively learn the
Koopman operator.

IV. CONTROL SYNTHESIS FOR ACTIVE LEARNING OF
KOOPMAN OPERATOR DYNAMICS

Active learning controllers need to consider existing polices
that solve a task while generalizing to learning objectives. In
this section, we formulate a controller for active learning that
takes into account the Koopman operator dynamics as well
as polices generated for solving tasks using the Koopman
operator linear dynamics. We generate an active learning con-
troller that takes into account existing policies by first deriving
the mode insertion gradient [38], [39]. The mode insertion
gradient calculates how an objective changes when switching
from one control strategy to another. We then formulate an
active learning controller by minimizing the mode insertion
gradient while including policies that solve a specified task.
1 The derived controller is then shown to increase the rate of
change of the information measure, which guides the robot
towards important regions of state-space, improving the data
collection and the quality of the learned Koopman operator
dynamics model.

A. Control Formulation
Active learning allows a robotic agent to self-excite the dy-

namical states in order to collect data that results in a Koopman
operator K that can be used describe system evolution. We
formulate the active learning problem as a hybrid switching
problem [41] where the goal is to switch between a policy for
a task to an information maximizing controller that assists the
dynamical system in collecting informative data.
Consider a general objective function of the form

J =

Z ti+T

ti

`(z(s), µ(z(s)))ds+m(z(ti + T )) (14)

where z(t) : R ! Rcx is the value of the function observables
at time t subject to the Koopman dynamics in (10) starting
from initial condition z(x(ti)), `(z, u) : Rcx ⇥ Rm ! R is
the running cost, m(z) : Rcx ! R is the terminal cost, and
µ(z) : Rcx ! Rcu is a C1 differentiable policy. In this work,
the running cost is split into two parts:

`(z, u) = `learn(z, u) + `task(z, u)

where `learn is the information maximizing objective (learning
task) and `task(z, u) is the task objective for which the policy
µ(z) is a solution to (14) when `learn = 0.
Given equation (14), we want to synthesize a controller that

is bounded to the policy µ(z), but also allows for improvement
of an information measure for active learning. To do so, we
examine in Proposition (1) how sensitive (14) is to switching
between the policy µ(z) to an arbitrary control vector µ?(t)
at time ⌧ for a time duration �.

1During training, the policies derived from the Koopman operator dynamics
will be inaccurate; however, over time and gathered experience, both the model
and policy will converge. This is a common approach in most model-based
reinforcement learning techniques [40].

Proposition 1. The sensitivity of switching from µ to µ? for
all ⌧ 2 [ti, ti + T ] for an infinitesimally small �, (also known
as the mode insertion gradient [38], [39]) is given by

@J

@�

���
⌧,�=0

= ⇢(⌧)>(f2 � f1) (15)

where z(t) is a solution to 10 with u(t) = µ(z(t)) and z(ti) =
z(x(ti)), f2 = f(z(⌧), µ?(⌧)), f1 = f(z(⌧), µ(z(⌧))), and

⇢̇ = �
 
@`

@z
+
@µ

@z

> @`

@u

!
�
✓
@f

@z
+
@f

@u

@µ

@z

◆>
⇢ (16)

subject to the terminal condition ⇢(ti+T ) = @
@zm(z(ti+T )).

Proof. See Appendix B-A.

We can write an unconstrained optimization problem for
calculating µ?(⌧) over the interval ⌧ 2 [ti, ti + T ] that will
minimize the mode insertion gradient. We can write this
optimization problem using a secondary objective function

J2 =

Z ti+T

ti

@J

@�

���
⌧=t,�=0

+
1

2
kµ?(t)� µ(z(t))k2

R̃
dt, (17)

where R̃ 2 Rn⇥n bounds the change of µ? to µ(z), and
@J
@�

���
⌧=t,�=0

is evaluated at ⌧ = t. Solving equation (17) with

respect to µ?(t) can be viewed as a functional optimization
over µ?(t)8t 2 [ti, ti + T ]. Since equation (17) is quadratic in
µ?, we can compute a closed form solution for any application
time ⌧ 2 [ti, ti + T ].

Proposition 2. Assuming that v(x, u) is differentiable, the
control solution that minimizes (17) is

µ?(t) = �R̃�1

✓
Ku

@v

@u

◆>
⇢(t) + µ(z(t)). (18)

Proof. Since (17) is separable in time, we take the derivative
of (17) with respect to µ?(t) at each point in t which gives
the following expression:

@

@µ?
J2 =

Z ti+T

ti

@

@µ?

�
⇢(t)> (f2 � f1)

�
+ R̃ (µ?(t)� µ(z(t)) dt

=

Z ti+T

ti

✓
Ku

@v

@u

◆>
⇢(t) + R̃(µ?(t)� µ(x(t)))dt.

(19)

Solving for µ?(t) in (19) gives the control solution

µ?(t) = �R̃�1

✓
Ku

@v

@u

◆>
⇢(t) + µ(z(t)).

Proposition (2) gives a formula for switching from µ?(t)
to improve the objective (14). We can use equation (18) with
(B-A) to show that our approach improves the active learning
objective subject to bounds placed on arbitrary tasks included
in (14).

Corollary 1. Assume that the Koopman operator dynamics for
a system are defined by the following control affine structure:

ż = Kxz(x(t)) + Kuv(x(t))u(t) (20)



5

where v(x) : Rn ! Rcu⇥m. 2 Moreover, assume that @
@µH 6=

0 where H is the control Hamiltonian for (14). Then

@

@�
J = �| (Kuv(x))

> ⇢|2
R̃�1 < 0 (21)

for µ?(t) 2 U 8t 2 [ti, ti + T ] where U is the control space.

Proof. Inserting (18) into (B-A) gives

@

@�
J = ⇢(t)> (Kuv(x(t)))

⇣
�R̃�1 (Kuv(x(t)))

> ⇢(t)
⌘

which can be written as the norm
@

@�
J = �| (Kuv(x))

> ⇢|2
R̃�1 < 0.

Because we define our objective to be reasonably general,
we can add both stabilization terms as well as information
measures that allow a robot to actively identify its own
dynamics. The following subsection provides an overview of
the Fisher information measure and information bounds based
on our controller. We first describe the Fisher information
matrix for the Koopman operator parameters and then generate
an information measure. We then show that using (18) and
Corollary 1, that we can approximately calculate to first order
the gain in information.

B. Information Maximization

Using the controller defined in (18), we investigate in-
formation measures that we can use in (14) to enable the
robot to actively learn the Koopman operator dynamics. In
this work, we use the Fisher information [42], [43] to gen-
erate a information measure for active learning. The Fisher
information is a way of measuring how much information a
random variable has about a set of parameters. If we treat
calculating the Koopman operator dynamics as a maximum
likelihood estimation problem where the likelihood is given by
⇡(z | K) : Rcx ! R+, we can compute the Fisher information
matrix over the parameters that compose of the Koopman
operator K. The Fisher information matrix is computed as

I [z | K] = E

@

@
log ⇡(z | K)> @

@
log ⇡(z | K)

�
2 R||2

(22)
where E is the expectation operator,  = {Ki,j | Ki,j 2 K},
and || is the cardinality of the vector . Assuming that ⇡ is
a Gaussian distribution, (22) becomes

I [z | K] = @f

@

>
⌃�1 @f

@
(23)

where ⌃ 2 Rcx⇥cx is the noise covariance matrix. Because the
Fisher information defined here is positive semi-definite, we
use the trace of the Fisher information matrix [44] in `(z, u).
This measure allows us to synthesize control actions that
maximize the T-optimality measure of the Fisher information
matrix [44].

2This formulation assumes that we can recover x(t) from z(t) for com-
puting v(x).

Definition 1. The T-optimality measure is given by the trace
of the Fisher information matrix (22) and defined as

I(K) = tr I [z | K] � 0. (24)

In this work we incorporate (24) into (14) additively using
1/(I+ ✏), that is

`learn(z, u) = 1/(I(K) + ✏)

where ✏ ⌧ 1 is a small number to prevent singular so-
lutions due to the positive semi-definite Fisher information
matrix [45]–[47], and I is computed using the evaluation of
K at time ti. By minimizing (14) we also minimize the inverse
of the T-optimality (which maximizes the T-optimality).

Assumption 1. Assume that I(K̃) > 0 implies I(K) > 0
where K̃ is an approximation to the Koopman operator K
computed from the data set D = {x(tm), u(tm)}im=0 that
contains data up until the current sampling time ti.

Theorem 1. Given Assumption 1 and dynamics (20), then
the change in information 3 �I subject to (18) is given to first
order

�I ⇡ (|(Kuv(x))
> ⇢|2

R̃�1 + `task(z, µ?)

� `task(z, µ))Iµ?Iµ +O(�t), (25)

where Iµ? , Iµ is the T-optimality measure (24) from applying
the control µ? and µ.

Proof. See Appendix B-B.

Theorem 1 shows that our controller increases the rate
of information that a robot would have normally acquired
if it had only used the control policy µ(z). Weighing the
information measure against the task objective allows us to
ensure that the relative information gain is positive when using
the active learning controller. That is, the difference between
the information from using the policy µ(x) and the control
µ?(t) will be positive. Other heuristics can be used such
as a decaying weight on the information gain or setting the
weight to 0 at a specific time so that the robot attempts the
task. We provide a basic overview of the control procedure
in Algorithm 1 and have provided example code in https:
//github.com/ianabraham21/koopman-ctrl-active-learning.

Algorithm 1 Active Learning Control

1: initialize: objective `(z, u), policy µ(z), normally dis-
tributed random K ⇠ N (0,1).

2: sample state measurement x(ti)
3: add x(ti) to dataset D, update K and µ(z)
4: simulate z(t), ⇢(t) for t 2 [ti, ti + T ] with conditions

z(ti) = z(x(ti)) and ⇢(ti + T ) = @
@zm(z(ti + T )) with

µ(z)

5: compute µ?(t) = �R̃�1
�
Ku

@v
@u

�>
⇢(t) + µ(z(t))

6: return µ?(ti)
7: update timer ti ! ti+1

The following sections use our derived controller to enable
active-learning of Koopman operator dynamics.

3With respect to the information acquired from applying only µ(z).



6

V. SINGLE EXECUTION ACTIVE LEARNING OF
FREE-FALLING QUADCOPTERS

In this example, we illustrate the capabilities of combining
the Koopman operator representation of a dynamical systems
and active learning for single execution model learning of
a free-falling quadcopter for stabilization. Additionally, we
compare our approach to other common learning strategies
such as active learning with Gaussian processes [48]–[50],
online model adaptation through direct attempts at the tasks
of stabilization (common online reinforcement learning and
adaptive control approach [19], [20], [37], [51], [52]), and
a two-stage noisy motor input (often referred to as “motor
babble” [53]–[55]).

A. Problem Statement

The task is as follows: The quadcopter, with dynamics
described in Appendix A-B and [56], must learn a model
within the first second of free-falling and then use the model to
generate a stabilizing controller, preventing itself from falling
any further. We define success of the quadcopter in the task
when kx � xdk2 < 0.01 where xd is the desired target state
defined by zero linear and angular velocity. The controllers
are designed as linear quadratic regulators using the model that
was learned and the LQ objectives provided in Section III. The
parameters used for this example are defined in Appendix A-B
and follows the same parameter choices as in Section III for
fairness in terms of the learning methods against which we
are comparing.
We compare the information gained (based on the T-

optimality condition) and the stabilization error in time against
various learning strategies. Each learning strategy is tested
with the same 20 uniformly sampled initial velocities (and
angular velocities) between �2 and 2 radians/meters per
second. After each trial, the learned dynamics model is reset
so that no information from the previous trials are used.

B. Other Active Learning Strategies

We compare our method for active learning against common
dynamic model learning strategies. Specifically, we compare
three model learning approaches against our method, a two-
stage noisy control input approach [53], a direct stabilization
with adaptive model using least squares [19], [37], and an
active learning strategy using a Gaussian process [57], [58].
Each of these strategies are generating a Koopman operator
using the functions of state defined in Appendix A-B to
generate a dynamic model of the quadcopter. The Gaussian
process formulation is the only model where the functions map
to the original state-space resulting in a nonlinear dynamics
model.

a) Least Squares Adaptive Stabilization: The first strat-
egy we compare to is to do the task of stabilization at the while
updating the model of the dynamics recursively [19], [37].
This is often a strategy used in model-based reinforcement
learning [54] and adaptive control [37].

b) Two-Stage Motor Babble: The second strategy is a
two stage approach using noisy motor input (motor babble)
for the first second and then pure stabilization [53]. Rather
than directly attempting to stabilize the dynamics, the priority
is to simply try all possible motor inputs regardless of the
model of the dynamics that is being constructed. The motor
babble strategy allows us to bound the motor excitation which
prevents the rotor from destabilizing once the learning stage
is complete. As with the direct stabilization method, we use
a recursive least squares to update the model of the Koopman
operator.

c) Active Learning with Gaussian Process: The last
strategy is an active Gaussian process strategy [57], [58].
In this active learning strategy, we build a model of the
dynamics of the quadcopter by generating a Gaussian process
dynamics model [50], [57]. Using the variance estimate [58],
we uniformly sample points around the current state bounded
by some ✏ constant and find the state which maximizes the
variance. The sampled state with the largest variance is then
used to generate a local LQ controller to guide the quadcopter
dynamics to that state to collect the data. After the first second,
the Gaussian process model is used to generate a stabilizing
controller by linearizing the model about the final desired
stabilization state. The kernel function used is computed using
the functions of state provided in Appendix A-B for a fair
comparison.
Note that for the two-stage, least squared adaptive, and

our approach, we learn a Koopman operator dynamics model
which we use to compute an LQ controller. The Gaussian
process model is in in the original state-space as described
in [50].

C. Results

Figure 2 (a) illustrates the information (T-optimality of the
Fisher information matrix) for each method. Our approach
to active learning is shown to improve upon the information
when compared to motor babble (the most basic method for
active learning). The other methods outperform our approach
in terms of the overall information gain by overly exciting
the dynamics. The direct adaptive stabilization method utilizes
the incorrect dynamics model to self-adjust and eventually
stabilize the quadcopter (as shown in the variance). The active
Gaussian process approach uses the covariance estimate to
actuate the quadcopter towards uncertain regions. Collecting
data in uncertain regions allows the active Gaussian process
approach to actively select where the quadcopter should collect
data next.
It is worth noting that these approaches will often lead

the quadcopter towards unstable regions, making it difficult
to stabilize the dynamics in time. Our approach actively
synthesizes when it is best to learn and stabilize which assists
in quickly stabilizing the quadcopter dynamics (see Figure 2
(b)). The addition of the Koopman operator dynamics further
enhances the control authority of the quadcopter as shown
with the direct adaptive stabilization, motor babble, and our
approach to active learning. While the active Gaussian process
model does at times succeed, the method relies on both the



7

(a) Inf. Gain (b) Stabilization Error
x(m)

z(m)

(c) Sample Trajectories

Fig. 2: Monte-Carlo simulation comparing various learning strategies to stabilize a quadcopter falling for 20 trials with uniformly
sampled initial linear and angular velocities. (a) Information gain (trace of the Fisher information matrix) is shown for the
various learning strategies. (b) Stabilization error and standard deviation is shown over time for each learning strategy over 20
trajectories. (c) Representative time series snapshots are shown depicting the various learning strategies. With our approach,
maximization of the information measure, coupled with the Koopman operator formulation of the dynamics, enables quick
stabilization of the quadcopter.

quality of data acquired and the local linear approximation to
the dynamics. This results in a deficit of nonlinear information
that is needed to successfully achieve the learning task in a
single execution.

D. Sensitivity to Initialization and Parameters
We further test our algorithm against sensitivities to ini-

tialization of the Koopman operator. Our algorithm requires
an initial guess at the Koopman operator in order to boot-
strap the active learning process. We accomplish this using
the same experiment described in the previous section which
used a zero mean, variance of 1 normally distributed initial-
ization of the Koopman operator. We vary the variance that
initializes the Koopman operator parameters using a normal
distribution with zero mean and a variance experiment set of
{0.01, 0.1, 1.0, 10.0}.
In Fig. 3 we find that so long as the initialization of the

Koopman operator is within a reasonable initialization (non-
zero and within an order of magnitude), the performance is
comparable to active learning described in Fig. 2. However,
this may not be true for all autonomous systems and results
may vary depending on the sampling frequency and the
behavior of the underlying system. A benchmark is provided
for stabilizing the quadcopter when the Koopman operator
is precomputed in Fig 3 illustrating the performance of the
control authority when using the Koopman operator-based
controller.
The choices in the parameters of our algorithm can also

effect its performance. Specifically, setting the value of the
regularization term R̃ too large will prevent the robot from
significantly exploring the states of the robot. In contrast, if
the regularization term is set too low, the robot will widen its
breath of exploration which can be harmful to the robot if the
states are not bounded. A similar effect is achieved by adding
a weight on the active learning objective.

(a) Stab. Err. (b) Inf. Gain

Fig. 3: Resulting sensitivities in stabilization error and in-
formation gain with respect to variance levels in Koopman
operator initialization. Benchmark stabilization performance is
provided for known/precalculated Koopman operator.

Changes in the time horizon T will also effect the per-
formance of the algorithm. Generally, smaller T will result
in more reactive behaviors where larger T tends to have
more intent driven control responses. Choosing these values
appropriately will be problem specific; however, the limited
number of tunable parameters (not including choosing a task
objective) provides the advantage of ease of implementation.

E. Discussion

While the single execution capabilities of the Koopman op-
erator with active learning is appealing, not all robotic systems
will be capable of such drastic performance. In particular, this
example relies on some prior knowledge of the underlying
robotic system and the dynamics that govern the system. The
functions of state are chosen such that they include nonlinear
elements (e.g, cross product terms that we expect will help
in stabilization). Thus, the approximate Koopman operator is
predicting the evolution of nonlinear elements found in the



8

original nonlinear dynamics. Often these underlying structures
that we can exploit are not known or easily found in robotics.
Choosing random polynomial or Fourier expansions as func-
tion observables can sometimes work (see Section VII), but
often can lead to unstable eigenvalues in the Koopman operator
dynamics which can make model-based control difficult to
synthesize [26].
Recent work has attempted to address these issues using

sparse optimization [59] or discovering invariances in the state-
space [26]. A promising method is automating the discovery
of the function observables by learning the functions from
data [60]. By using current advances in neural networks and
function representation, it is possible to automate the dis-
covery of function observables. The following section further
develops the work in automating the discovery of function
observables for Koopman operators through the use of our
approach for active learning.

VI. AUTOMATING DISCOVERY OF KOOPMAN OPERATOR
FUNCTION OBSERVABLES

As a solution to automating the choice of function observ-
ables, the use of deep neural networks [60] have been used
to automatically discover the function observables. In this
section, we illustrate that we can use these neural networks
coupled with our approach for active learning to automatically
discover the Koopman operator and the associated functions
of state.

(a) Cart Pendulum (b) 2-Link Robot

Fig. 4: (a) Resulting stabilization time of a cart pendulum us-
ing Koopman operators with automatic function discovery. (b)
Control response of a 2-link robot using Koopman operators
with automatic function discovery. Active learning improves
the rate of success of each task.

A. Including Automatic Function Discovery
Revisiting Equation 10, we can parameterize z(x) and

v(x, u) using a multi-layer neural network with parameters
✓ 2 Rd. We denote the parameterization of z, v as z✓(x)
and v✓(x, u) where the subscript ✓ denotes the function
observables are parameterized by the same set of parameters
✓. Given the same data set that was defined previously,
D = {x(tm), u(tm)}Mm=0, the new optimization problem that
is to be solved is

min
K,✓

1

2

M�1X

m=0

kz̃✓(x(tm+1), u(tm+1))� Kz̃✓(x(tm), u(tm))k2,

(26)

where z̃✓(x, u) =
⇥
z✓(x)>, v✓(x, u)>

⇤>. Equation (26) can be
solved using any of the current techniques for gradient descent
(Adams method [61] is used in this work). The continuous
time Koopman operator is obtained similarly using the matrix
log of K, resulting in the differential equation

ż✓ = Kxz✓(x(t)) + Kuv✓(x(t), u(t)). (27)

Because we are now optimizing over ✓, we lose the sample ef-
ficiency of single execution learning that was illustrated in the
example in Section V. Active learning can be used; however,
adding the additional parameters ✓ to the information measure
significantly increases the computational cost of calculating
the Fisher information measure (22). As a result, we only
compute the information measure with respect to K in order to
avoid the computational overhead of maximizing information
with respect to ✓.

B. Examples
We illustrate the use of deep networks for automating the

function observables for the Koopman operator for stabilizing
a cart pendulum and controlling a 2-link robot arm to a target.
A neural network is first initialized (see Appendix A-C for
details) for the Koopman operator functions z✓, v✓ as well
as an LQ controller for the task at hand. At each iteration,
the robot attempts the task and learns the Koopman operator
dynamics by minimizing (26). We compare against decaying
additive control noise as well as our method for active learning
where a weight on information measure is used which decays
at each iteration according to �i+1 where 0 < � < 1 and i is
the iteration number. The data collected is then used to update
the parameters ✓ and K using (26) and the LQ controller is
updated with the new Kx,Ku parameters.
Figure 4 illustrates that we can automate the process of

learning the function observables as well as the Koopman
operator. With the addition of active learning, the process of
learning the Koopman operator and the function observables
is improved. In particular, stabilization of the cart pendulum
is achieved in only 50 iterations in comparison to additive
noise which takes over 100 iterations. Similarly, the 2-link
robot can be controlled to the target configuration within 5
iterations with our active learning approach.

C. Discussion
While this method is promising, there still exist significant

issues that merit more investigation in future work. One of
which is the trivial solution where z✓, v✓ = 0. This issue often
occurs with how the parameters ✓ were initialized. This trivial
solution has been addressed in [62]; however, their approach
requires significantly complicating how the regression (26) is
formulated. We found that adding the state x as part of the
neural network output of z✓ was enough to overcome the trivial
solution.

VII. ROBOT EXPERIMENTS

Our last set of examples test our active learning strategy
with robot experiments. We use the robots depicted in Figure 5



9

to illustrate control and active learning with Koopman opera-
tors. The sphero SPRK robot (Figure 5a) is a differential drive
robot inside of a clear outer ball. We test trajectory tracking of
the SPRK robot in a sand terrain where the challenge is that
the SPRK must be able to learn how to maneuver in sand.
The Sawyer robot (Figure 5b) is a 7-link robot arm whose
task is to track a trajectory defined at the end effector where
the challenge is the high dimensionality of the robot. We refer
the reader to the attached multimedia which has clips of the
experiments.

(a) Sphero SPRK (b) Sawyer Robot

Fig. 5: Depiction of robots used for experimentation.

A. Experiments: Granular Media and Sphero SPRK

Active learning is applied in an experimental setting using
the Sphero SPRK robot (Fig. 5a) in sand. The interaction be-
tween sand and the SPRK robot makes physics-based models
challenging.

SPRK Robot

Sand Barrier

(a) Experimental Setup

Koopman Operator Control
Target Trajectory

State-Space Linear-Model Control

(b) SPRK Trajectories

Method RMSE Correlation Phase Lag (rad)
Koopman-based Control 0.3010 0.4028 1.1262

Controller in [32] 0.3535 0.1034 1.4667

(c) Controller performance

Fig. 6: Experiment using the Sphero SPRK robot in sand.
(a) The experimental setup is depicted with the SPRK robot
inside the sand pit. Position information is calculated with an
overhanging Xbox Kinect using OpenCV [63] for tracking.
(b) Performance of the SPRK robot using the Koopman
operator-based controller after active learning. Performance is
compared with results from [32]. (c) Performance measures
showing active learning significantly outperforms non-active
learning in robot experiment. The attached multimedia shows
the experiment executed.

The parameters for the experiment are defined in Ap-
pendix A-D. The experiment starts with 20 seconds of active

learning. After actively identifying the Koopman operator, the
weight on information maximizing is set to zero at t = 20
and the objective is switched to track the trajectory shown in
Fig. 6b. In Fig. 6c, we show the average root mean squared
error (RMSE) of the x � y trajectory tracking, the average
x�y Pearson’s correlation using a two-sided hypothesis testing
(values close to 1 indicate responsive controllers), and the
phase lag of the experimental results. Note that in contrast
to previous work by the authors [32], the method of actively
learning the Koopman operator improves the performance of
the model-based controller. In particular, we find that the
overall responsiveness and phase lag of the Koopman-based
controller improved after active learning in sand.

(a) Experimental Visualization

Sawyer Joint Controller
Koopman-based Control

Target Trajectory

(b) Sawyer Trajectories

Method RMSE Correlation Phase Lag (rad)
Koopman-based Control 0.0228 0.9777 0.2826
Sawyer Joint Controller 0.0443 0.6026 0.7041

(c) Controller performance

Fig. 7: Experiment using Sawyer. Experimental data visualized
using RViz [64]. (a) End-effector trajectory paths using the
embedded Rethink Joint controller and Koopman operator
controller. Both controllers are running at 100 Hz. (b) Tra-
jectory overlaid from both controller responses. (c) Controller
performance shows that active learning for Koopman operator-
based controllers performs comparably. We refer the reader to
the attached multimedia to view clips of this experiment.

B. Experiments: Trajectory Tracking of Rethink Sawyer Robot

In this experiment, we use active learning with the Koopman
operator to model a 7 DoF Sawyer robot arm from Rethink
Robotics. The 7-DoF system is of interest because it is both
high dimensional and inertial effects tend to dominate the
dynamics of the system. We define the parameters used for
this experiment in Appendix A-E.
Figure 7 illustrates a comparison of the embedded controller

in the Sawyer robot and the data-driven Koopman operator
controller. Here, we show the average root mean squared error
of the tracking position, the Pearson’s correlation using a two-
sided hypothesis testing (values close to 1 indicate responsive
controllers), and the phase lag of the trajectory tracking. The
resulting controller using the Koopman operator is shown to
be comparable to the built-in controller with the inclusion
of the evolution of the nonlinearities on the Sawyer robot
which improve overall trajectory tracking performance. The
trajectories of the two methods are overlaid which illustrates



10

the improvement in control from the Koopman operator after
active learning has occurred. Since data is always being
acquired online, the Koopman operator is continuously being
updated as the robot is tracking the trajectory. The Koopman
operator-based controller is able to capture dynamic effects of
the individual joints from data. This is further reinforced by
the improved results found Note that one can build a model to
solve for similar, if not better, inverse dynamics of the Sawyer
robot that can be computed for control. In particular, the
Sawyer robot provides an implementation of inverse dynamics
in the robot’s embedded controller. However, our approach
provides high accuracy without needing such a model ahead
of time and without linearizing the nonlinear dynamics.

VIII. CONCLUSION

In this paper, we use Koopman operators as a method for en-
hancing control of robotic systems. In addition, we contribute
a method for active learning of Koopman operator dynamics
for robotic systems. The active learning controller enables
the robots to learn their own dynamics quickly while taking
into account the linear structure of the Koopman operator to
enhance LQ control. We illustrate various examples of robot
control with Koopman operators and provide examples for
automating design choices for Koopman operators. Last, we
show that our method is applicable to actual robotic systems.

REFERENCES

[1] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert
space,” Proceedings of the National Academy of Sciences, vol. 17, no. 5,
pp. 315–318, 1931.

[2] I. Mezić, “Analysis of fluid flows via spectral properties of the Koopman
operator,” Annual Review of Fluid Mechanics, vol. 45, pp. 357–378,
2013.

[3] ——, “On applications of the spectral theory of the Koopman operator
in dynamical systems and control theory,” in IEEE Int. Conf. on Decision
and Control (CDC), 2015, pp. 7034–7041.

[4] M. Budišić, R. Mohr, and I. Mezić, “Applied Koopmanism,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 22, no. 4, p. 047510,
2012.

[5] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” arXiv
preprint arXiv:1611.03537, 2016.

[6] N. Roy and A. McCallum, “Toward optimal active learning through
monte carlo estimation of error reduction,” International Conference on
Machine Learning, pp. 441–448, 2001.

[7] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[8] C. Dima, M. Hebert, and A. Stentz, “Enabling learning from large
datasets: Applying active learning to mobile robotics,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), vol. 1, 2004, pp. 108–114.

[9] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[10] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2017.

[11] B. Armstrong, “On finding exciting trajectories for identification exper-
iments involving systems with nonlinear dynamics,” The International
Journal of Robotics Research, vol. 8, no. 6, pp. 28–48, 1989.

[12] A. D. Wilson, J. A. Schultz, A. R. Ansari, and T. D. Murphey,
“Dynamic task execution using active parameter identification with the
Baxter research robot,” IEEE Transactions on Automation Science and
Engineering, vol. 14, no. 1, pp. 391–397, 2017.

[13] A. D. Wilson, J. A. Schultz, and T. D. Murphey, “Trajectory synthesis
for Fisher information maximization,” IEEE Transactions on Robotics,
vol. 30, no. 6, pp. 1358–1370, 2014.

[14] K. Ayusawa and E. Yoshida, “Motion retargeting for humanoid robots
based on simultaneous morphing parameter identification and motion
optimization,” IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1343–
1357, 2017.

[15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
2016, pp. 1928–1937.

[16] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Inter-
national Conference on Machine Learning, 2016, pp. 1329–1338.

[17] M. Cutler, T. J. Walsh, and J. P. How, “Real-world reinforcement
learning via multifidelity simulators,” IEEE Transactions on Robotics,
vol. 31, no. 3, pp. 655–671, 2015.

[18] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:
Learning a universal policy with online system identification,” in Pro-
ceedings of Robotics: Science and Systems, 2017.

[19] K. S. Sin and G. C. Goodwin, “Stochastic adaptive control using a
modified least squares algorithm,” Automatica, vol. 18, no. 3, pp. 315–
321, 1982.

[20] F. Ding, X. Wang, Q. Chen, and Y. Xiao, “Recursive least squares
parameter estimation for a class of output nonlinear systems based on
the model decomposition,” Circuits, Systems, and Signal Processing,
vol. 35, no. 9, pp. 3323–3338, 2016.

[21] F. Ding, D. Meng, J. Dai, Q. Li, A. Alsaedi, and T. Hayat, “Least squares
based iterative parameter estimation algorithm for stochastic dynamical
systems with ARMA noise using the model equivalence,” International
Journal of Control, Automation and Systems, vol. 16, no. 2, pp. 630–639,
2018.

[22] V. Bonnet, P. Fraisse, A. Crosnier, M. Gautier, A. Gonzlez, and G. Ven-
ture, “Optimal exciting dance for identifying inertial parameters of an
anthropomorphic structure,” IEEE Transactions on Robotics, vol. 32,
no. 4, pp. 823–836, 2016.

[23] J. Jovic, A. Escande, K. Ayusawa, E. Yoshida, A. Kheddar, and
G. Venture, “Humanoid and human inertia parameter identification using
hierarchical optimization,” IEEE Transactions on Robotics, vol. 32,
no. 3, pp. 726–735, 2016.

[24] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and
J. N. Kutz, “On dynamic mode decomposition: theory and applications,”
Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, 2014.

[25] A. Mauroy and I. Mezić, “Global stability analysis using the eigen-
functions of the Koopman operator,” IEEE Transactions on Automatic
Control, vol. 61, no. 11, pp. 3356–3369, 2016.

[26] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koop-
man invariant subspaces and finite linear representations of nonlinear
dynamical systems for control,” PloS one, vol. 11, no. 2, p. e0150171,
2016.

[27] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of
Koopman eigenfunctions for control,” arXiv preprint arXiv:1707.01146,
2017.

[28] A. Sootla and D. Ernst, “Pulse-based control using Koopman operator
under parametric uncertainty,” IEEE Transactions on Automatic Control,
2017.

[29] C. W. Rowley, “Low-order models for control of fluids: Balanced models
and the Koopman operator,” Advances in Computation, Modeling and
Control of Transitional and Turbulent Flows, p. 60, 2015.

[30] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decom-
position with control,” Journal on Applied Dynamical Systems, vol. 15,
no. 1, pp. 142–161, 2016.

[31] A. Surana, “Koopman operator based observer synthesis for control-
affine nonlinear systems,” in IEEE Int. Conf. on Decision and Control
(CDC), 2016, pp. 6492–6499.

[32] I. Abraham, G. de la Torre, and T. Murphey, “Model-based control using
Koopman operators,” in Proceedings of Robotics: Science and Systems,
2017.

[33] A. Broad, T. Murphey, and B. Argall, “Learning models for shared
control of human-machine systems with unknown dynamics,” in Pro-
ceedings of Robotics: Science and Systems, 2017.

[34] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from raw
images,” in Advances in neural information processing systems, 2015,
pp. 2746–2754.

[35] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin,
“Variational autoencoder for deep learning of images, labels and cap-
tions,” in Advances in neural information processing systems, 2016, pp.
2352–2360.



11

[36] M. Rattray, D. Saad, and S.-i. Amari, “Natural gradient descent for on-
line learning,” Physical review letters, vol. 81, no. 24, p. 5461, 1998.

[37] T. Lai and C.-Z. Wei, “Extended least squares and their applications to
adaptive control and prediction in linear systems,” IEEE Transactions
on Automatic Control, vol. 31, no. 10, pp. 898–906, 1986.

[38] M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of switching
times in switched dynamical systems,” in IEEE Int. Conf. on Decision
and Control (CDC), vol. 3, 2003, pp. 2138–2143.

[39] H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest, “Gradient descent
approach to optimal mode scheduling in hybrid dynamical systems,”
Journal of Optimization Theory and Applications, vol. 136, no. 2, pp.
167–186, 2008.

[40] C. G. Atkeson and J. C. Santamaria, “A comparison of direct and model-
based reinforcement learning,” in IEEE International Conference on
Robotics and Automation, vol. 4, 1997, pp. 3557–3564.

[41] A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-
form optimal control for nonlinear and nonsmooth systems,” IEEE
Transactions on Robotics, vol. 32, no. 5, pp. 1196–1214, 2016.

[42] F. Pukelsheim, Optimal Design of Experiments. SIAM, 2006.
[43] T. M. Cover and J. A. Thomas, Elements of Information Theory. John

Wiley & Sons, 2012.
[44] N. Nahi and G. Napjus, “Design of optimal probing signals for vector

parameter estimation,” in IEEE Conference on Decision and Control,
vol. 10, 1971, pp. 162–168.

[45] T. Morimura, E. . i. e. j. Uchibe, and K. Doya, “Utilizing the natural
gradient in temporal difference reinforcement learning with eligibility
traces,” in International Symposium on Information Geometry and Its
Applications, 2005, pp. 256–263.

[46] H. Wei, J. Zhang, F. Cousseau, T. Ozeki, and S.-i. Amari, “Dynamics
of learning near singularities in layered networks,” Neural computation,
vol. 20, no. 3, pp. 813–843, 2008.

[47] M. Inoue, H. Park, and M. Okada, “On-line learning theory of soft
committee machines with correlated hidden units–steepest gradient
descent and natural gradient descent–,” Journal of the Physical Society
of Japan, vol. 72, no. 4, pp. 805–810, 2003.

[48] X. Yan, V. Indelman, and B. Boots, “Incremental sparse gp regression
for continuous-time trajectory estimation and mapping,” Robotics and
Autonomous Systems, vol. 87, pp. 120–132, 2017.

[49] D. Nguyen-Tuong and J. Peters, “Incremental online sparsification for
model learning in real-time robot control,” Neurocomputing, vol. 74,
no. 11, pp. 1859–1867, 2011.

[50] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408–423,
2015.

[51] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[52] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with em-based reinforcement learning,” in International
Conference on Intelligent Robots and Systems, 2010, pp. 3232–3237.

[53] R. Saegusa, G. Metta, G. Sandini, and S. Sakka, “Active motor babbling
for sensorimotor learning,” in International Conference on Robotics and
Biomimetics, 2009, pp. 794–799.

[54] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” arXiv preprint arXiv:1708.02596, 2017.

[55] R. F. Reinhart, “Autonomous exploration of motor skills by skill
babbling,” Autonomous Robots, vol. 41, no. 7, pp. 1521–1537, 2017.

[56] T. Fan and T. Murphey, “Online feedback control for input-saturated
robotic systems on lie groups,” in Proceedings of Robotics: Science and
Systems, 2016.

[57] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller opti-
mization for quadrotors with Gaussian processes,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2016, pp. 491–496.

[58] J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert,
and M. Toussaint, “Safe exploration for active learning with gaussian
processes,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2015, pp. 133–149.

[59] B. Kramer, P. Grover, P. Boufounos, S. Nabi, and M. Benosman, “Sparse
sensing and dmd-based identification of flow regimes and bifurcations in
complex flows,” Journal on Applied Dynamical Systems, vol. 16, no. 2,
pp. 1164–1196, 2017.

[60] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network
representations for Koopman operators of nonlinear dynamical systems,”
arXiv preprint arXiv:1708.06850, 2017.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[62] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature communications,
vol. 9, no. 1, p. 4950, 2018.

[63] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[64] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, no. 3.2.
Kobe, 2009, p. 5.

[65] O. Klimov and J. Shulman, “Roboschool,” https://github.com/openai/
roboschool, 2017.

[66] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

APPENDIX A
PARAMETERS FOR VARIOUS EXAMPLES

A. Control of forced van der pol oscillator
The nonlinear dynamics that govern the Van der Pol oscil-

lator are given by the differential equations

d

dt


x1

x2

�
=


x2

�x1 + ✏(1� x2
1)x2 + u

�

where ✏ = 1 and u is the control input.
The Koopman operator functions used are defined as

z(x) =
⇥
x1, x2, x

2
1, x2x

2
1

⇤>

and v(u) = u. The same functions are used to compute a
regression problem where the final equation is given by

d

dt


x1

x2

�
= Az(x) = Bv(u)

where A 2 Rn⇥cx and B 2 Rn⇥cu are both generated using
Bayesian optimization.
The weight parameters for LQ control are

Q = diag ([1, 1]) and R = 0.1

where
Q̃ =


Q 0
0 0

�
2 Rcx⇥cx (28)

B. Quadcopter Free-Falling
The quadcopter system dynamics are defined as

ḣ = h


!̂ v
0 0

�
,

J !̇ = M + J! ⇥ !,

v̇ =
1

m
Fe3 � ! ⇥ v � gRT e3,

where h = (R, p) 2 SE(3), the inputs to the system are u =
[u1, u2, u3, u4], and

F = kt(u1 + u2 + u3 + u4),

M =

2

4
ktl(u2 � u4)
ktl(u3 � u1)

km(u1 � u2 + u3 � u4)

3

5

(see [56] for more details on the dynamics and parameters
used). Note that in this formulation of the quadcopter, the
control vector u has bidirectional thrust.



12

The measurements of the state of the quadcopter are given
by

[ag,!, v]
> 2 R9 (29)

where ag 2 R3 denotes the body-centered gravity vector and
!, v are the body angular and linear velocities respectively.
The sampling rate for this system is 200 Hz.
We define the basis functions for this system as

z(x) = [ag,!, v, g(v,!)]
T 2 R18

where g(v,!) = [v3!3, v2,!3, v3!1, v1!3, v2!1,
v1!2,!2!3,!1!3,!1!2] are the chosen basis functions
such that !i, vi are elements of the body-centered angular and
linear velocity !, v respectively. The functions for control are

v(u) = u 2 R4.

The LQ control parameters for the stabilization problem are
given as

Q = diag ([1, 1, 1, 1, 1, 1, 5, 5, 5]) and R = diag ([1, 1, 1, 1])

where the weight on the additional functions Q̃ are set to zero
as in (28) . The time horizon used in 0.1s.
The active learning controller uses a weight on the in-

formation measure of 0.1 and a regularization weight R̃ =
diag(1000, 1000, 1000, 1000]). Motor noise used in the two-
stage method is given by uniform noise at 33% of the control
saturation.

C. Neural Network Automatic Function Discovery Configura-
tion

In this example, we use the Roboschool environments [65]
for the robot simulations.
For the cart pendulum example, we use a three layer net-

work with a single hidden layer for z✓ and v✓ with {4, 20, 40}
and {2, 20, 10} nodes respectively for each layer making
cx = 40 and cu = 10. The exploration noise used on the
control is given by additive zero mean noise with a variance of
40% motor saturation decreasing at a rate of 0.9i+1. The decay
weight on the information measure is given by 0.2i+1. The LQ
weights are given by Q̃ = diag([50.0, 1.0, 10.0, 0.1]+~0) where
the first non-zero weights correspond to the states of the cart
pendulum. A time horizon of 0.1s is used with a sampling
rate of 50 Hz. The regularization weight R̃ = 1⇥ 106.
For the 2-link robot example, we use a similar three

layer network with a single hidden layer for z✓ and v✓
with {4, 20, 40} and {2, 20, 20} nodes respectively for each
layer making cx = 40 and cu = 10. The exploration
noise used on the control is given by additive zero mean
noise with a variance of 40% motor saturation decreasing
at a rate of 0.9i+1. The decay weight on the information
measure is given by 0.2i+1. The LQ weights are given by
Q̃ = diag([10.0, 1.0, 20.0, 1.0] + ~0) where the first non-zero
weights correspond to the states of the cart pendulum. A time
horizon of 0.05s is used with a sampling rate of 100 Hz. The
regularization weight R̃ = diag([1⇥ 106, 1⇥ 106]).

D. SPRK Tracking in Sand

The SPRK robot is running a 30 Hz sampling rate for
control and state estimation. Control vectors are filtered using
a low-pass filter to avoid noisy responses in the robot. The
controller weights are defined as

Q̃ = diag([60, 60, 5, 5,~1])and R = diag([0.1, 0.1]).

The control regularization is R̃ = R. A weight of 80 is added
to the information measure. A time horizon of 0.5s is used to
compute the controller.
We run the active learning controller for 20 seconds and

then set the weight of the information measure to zero and
track the end effector trajectory given by


x(t)
y(t)

�
=


0.5 cos (t) + 1.12
0.3 sin (2t) + 0.85

�
.

In this example, the set of functions are chosen as a
polynomial expansion of the velocity states x = [ẋ, ẏ] to the
3rd order. The function observables are defined as

z(x) =
⇥
x, y, ẋ, ẏ, 1, ẋ2, ẏ2, ẋ2ẏ, . . . , ẋ3ẏ3

⇤T 2 R18

and

v(x, u) = u 2 R2.

E. Sawyer Control

The Sawyer robot was run on a sampling rate of 100
Hz. Control vectors are filtered using a low-pass filter to
avoid noisy responses in the robot. The controller weights are
defined as

Q̃ = diag([200⇥~1 2 R14,~1])and R = diag([0.001⇥~1 2 R7]).

The control regularization is R̃ = R. A weight of 2000 is
added to the information measure. A time horizon of 0.5s is
used to compute the controller.
We run the active learning controller for 20 seconds and

then set the weight of the information measure to zero and
track the end effector trajectory given by

2

4
x(t)
y(t)
z(t)

3

5 =

2

4
0.8

0.1 cos (2t)
0.1 sin (4t) + 0.4

3

5 .

The functions of state using to compute the Koopman
operator are defined as

z(x) =
h
xT , 1, ✓1✓2, ✓2✓3, . . . , ✓

3
6✓

3
7, ✓̇1✓̇2, . . . , ✓̇

3
6 ✓̇

3
7

iT
2 R51

with v(u) = u 2 R7 as the torque input control of each
individual joint and states x containing the joint angles and
joint velocities.



13

APPENDIX B
PROOFS

A. Proof of Proposition 1
Proposition 1 : The sensitivity of switching from µ to µ? at
any time ⌧ 2 [ti, ti + T ] for an infinitesimally small �, (also
known as the mode insertion gradient [38], [39]) is given by

@J

@�

���
⌧,�=0

= ⇢(⌧)>(f2 � f1)

where z(t) is a solution to 10 with u(t) = µ(z(t)) and z(ti) =
z(x(ti)), f2 = f(z(⌧), µ?(⌧)), f1 = f(z(⌧), µ(z(⌧))), and

⇢̇ = �
 
@`

@z
+
@µ

@z

> @`

@u

!
�
✓
@f

@z
+
@f

@u

@µ

@z

◆>
⇢

subject to the terminal condition ⇢(ti+T ) = @
@zm(z(ti+T )).

Proof. Consider the objective (14) evaluated at a trajectory
z(t)8t 2 [ti, ti + T ] generated from a dynamical system.
Furthermore, assume that z(ti + T ) is generated by a policy
µ(z(t))8t /2 [⌧, ⌧ + �] and a controller µ?(t)8t 2 [⌧, ⌧ + �]
where ⌧ is the time of application of control µ? and � is the
duration of the control. Formally, z(ti + T ) can be written as

z(ti + T ) = z(ti) +

Z ⌧

ti

f(z(t), µ(z(t)))dt (30)

+

Z ⌧+�

⌧
f(z(t), µ?(t))dt

+

Z ti+T

⌧+�
f(z(t), µ(z(t)))dt,

where f(z, u) : Rcx ⇥ Rcu ! Rcx is a mapping which
describes the time evolution of the state z(t).
Using (30) and (14), we compute the derivative of (14) with

respect to the duration � of control µ? applied at any time
⌧ 2 [ti, ti + T ]:

@

@�
J

�����
⌧

=

Z ti+T

⌧+�

 
@`

@z
+
@µ

@z

> @`

@u

!>
@z

@�
dt. (31)

where

@z(t)

@�
= f2 � f1 +

Z t

⌧+�

✓
@f

@z
+
@f

@u

@µ

@z

◆> @z(s)

@�
ds (32)

such that f2 = f(z(⌧), µ?(⌧)), f1 = f(z(⌧), µ(z(⌧))) are
boundary terms from applying Leibniz’s rule.
Because (32) is a linear convolution with initial condition,

@z(⌧)
@� = f2 � f1, we are able to rewrite the solution to

@z(t)
@� using a state-transition matrix �(t, ⌧) [66] with initial

condition f2 � f1 as

@z(t)

@�
= �(t, ⌧) (f2 � f1) . (33)

Since the term f2 � f1 is evaluated at time ⌧ , we can write
(31) as

@

@�
J

�����
⌧

=

Z ti+T

⌧+�

 
@`

@z
+
@µ

@z

> @`

@u

!>

�(t, ⌧)dt (f2 � f1) .

(34)

Taking the limit of (34) as � ! 0 gives us the sensitivity
of (14) with respect to switching at any time ⌧ 2 [ti, ti + T ].
We can further define the adjoint (or co-state) variable

⇢(⌧)> =

Z ti+T

⌧

 
@`

@x
+
@µ

@x

> @`

@u

!>

�(t, ⌧)dt 2 Rcx

which allows us to define the mode insertion gradient [39] as

@

@�
J
���
t=⌧

= ⇢(⌧)> (f2 � f1)

where

⇢̇ = �
 
@`

@z
+
@µ

@z

> @`

@u

!
�
✓
@f

@z
+
@f

@u

@µ

@z

◆>
⇢

subject to the terminal condition ⇢(ti + T ) = @
@zm(z(ti +

T )).

B. Proof of Theorem 1
Theorem 1 : Given Assumption 1 and dynamics (20), then
the change in information 4 �I subject to (18) is given to first
order

�I ⇡ (|(Kuv(x))
> ⇢|2

R̃�1 + `task(z, µ?)

� `task(z, µ))Iµ?Iµ +O(�t), (35)

where Iµ? , Iµ is the T-optimality measure (24) from applying
the control µ? and µ.

Proof. First define (14) for a controller as

J(u(t)) =

Z ti+�t

ti

1

Iu
+ `task(z(t), u(t))dt (36)

where �t < T is a time duration, z(t) is subject to the
controller u(t), and Iu is the measure of information from
applying the control u. If we consider the difference between
J(µ?) and J(µ) where µ is a controller that minimizes
`task(z, u), then

J(µ?)� J(µ) =

Z ti+�t

ti

1

Iµ?

� 1

Iµ
+ `task(z, µ?)� `task(z, µ)dt

⇡ �t

✓
1

Iµ?

� 1

Iµ
+ `task(z, µ?)� `task(z, µ)

◆

+O(�t).
(37)

From Corollary 1 and that,

@

@�
J�t ⇡ J(µ?)� J(µ),

we can show that
@

@�
J�t ⇡ J(µ?)� J(µ)

⇡ �t

✓
1

Iµ?

� 1

Iµ
+ `task(z, µ?)� `task(z, µ)

◆

+O(�t).

(38)

4With respect to the information acquired from applying only µ(z).



14

which we rearrange (38) and insert (21) to get

�| (Kuv(x))
> ⇢|2

R̃�1 ⇡
✓

1

Iµ?

� 1

Iµ
+ `task(z, µ?)� `task(z, µ)

◆

+O(�t).

⇡ Iµ � Iµ? + (`task(z, µ?)� `task(z, µ))Iµ?Iµ
Iµ?Iµ

+O(�t).
(39)

Setting �I = Iµ? � Iµ in (39) and simplifying gives the
relative information gain

�I ⇡ (| (Kuv(x))
> ⇢|2

R̃�1 + `task(z, µ?)

� `task(z, µ))Iµ?Iµ +O(�t).


